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Abstract:   
Applying the maximum likelihood method fatigue tests can be statistically evaluated. In the past, this method 
has proven to be an excellent tool to also evaluate those data not perfectly matching the requirements of DIN 
50100. The aim is to implement the maximum likelihood method in a knowledge system for materials using the 
example of the evaluation of S-N curves of ductile cast iron. The solution approach covers the entire process 
from the raw data from the testing machine to the evaluation and the provision of comparable knowledge and 
characteristic values. The characteristic values are saved in a way ready to be provided to other (FEM-) Simulation 
tools. In addition to the maximum likelihood method, the characteristic values will also be evaluated according 
to other methods and the results of the different methods can be compared with each other. 
 
Keywords: Maximum likelihood method, material database, test evaluation, knowledge management, test doc-
umentation   

1 Introduction 

The importance of material characterization as a 
whole is increasing: Increasingly powerful CAD/CAE 
and simulation tools demand even more specific and 
reliable material data with more detailed considera-
tion of the process history. The "digital twin" is the 
overarching goal of today’s holistic product develop-
ment activities. Materials testing for the description 
and verification of central properties of design and 
functional materials is of central importance here, 
alongside design, materials, process and manufac-
turing simulation. Even though the introduction of 
electronic data acquisition in materials testing has 
been state of the art for over 30 years, inconsistent 
data models, decentralized storage and media dis-
continuities often lead to problems when imple-
menting a "fully digital" process chain. In many cases, 
reports and certificates are only generated locally us-
ing office tools and stored "digitally". The reports are 
often created in the context of the project and can-

not be linked to other activities in the company. Ex-
pensive raw data is usually completely lost or lives 
out its existence in local, unconnected data silos. 
 

Fig. 1: Knowledge Pyramid – from “Data Lakes” to Cor-

porate Material Wisdom [1] 
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Digitization describes the pure analog-to-digital con-
version of existing data and documents with the sole 
advantage of full-text search compared to the paper 
form. Beyond that, our goal is digitalization: A trans-
formation into digital business processes for materi-
als engineering. This includes the continuous crea-
tion and use of a knowledge base and makes "mate-
rials analytics" possible: Acquiring insights and 
knowledge from order- and project-wide infor-
mation, e.g. by combining data from materials test-
ing with data from the process chains for the produc-
tion of components, materials and samples. The re-
sulting knowledge base allows for a comprehensive, 
person-independent core competence of a materials 
processing company that sustainably secures and 
values creation through innovation. 

Fig. 1 shows the structure of such a core competence 
in the form of a "knowledge pyramid". Identified 
data are the indispensable foundation - it must be as 
complete and comprehensive as possible for all pro-
cessors. But real information can only be obtained 
through analysis and linking, e.g. of material and pro-
cess data. This information must be condensed and 
processed as a report for company-wide decision-
making - ideally, however, all the data from the re-
ports can also be traced back "to the source" at any 
time and processed further. The more solid these 
building blocks are, the more reliable innovations 
will emerge from a deep understanding of the pro-
cesses in and around the own product. 
 

2 Materials Information 
Management 

Digitized testing machines record much more data 
than the certificate-relevant characteristic values. In 
addition to the various metadata/header data of a 
test a multitude of time-dependent data are rec-
orded via different channels, e.g. force, time, dis-
placement, temperature, stress and strain. In the 
context of the increasingly important use of optical 
extensometers or DIC (Digital Image Correlation), a 
combination of these signals with the signals from 
the testing machine seems useful. 
 
In addition, calculated material data via programs 
such as JMatPro®, Matcalc® or ThermoCalc® which 
can be combined with test data and verified on the 
basis of these data or complement them in a mean-
ingful way. Fig. 2 shows the workflow of such a pro-
cedure for plasticity of materials in EDA®, which is 
the materials information system created by Mat-
plus. The aggregated data can be processed and an-
alyzed by means of EDA® and either, as shown here, 
combined into data models for a CAD/CAE environ-
ment, or can be evaluated by development teams in 
a variety of ways. 
 
It is good practice to store the generated data sus-
tainably in archivable formats rather than using test-
ing machine-specific binary formats. JSON (Javascript 
Object Notation) is a universal technology that is par-
ticularly suitable for materials testing data. Even so-

Fig. 2: Schematic workflow for importing materials data of different types; analysis and modelling in the EDA® system [2, 3] 
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phisticated parametric data fields with high-resolu-
tion, time-dependent data can be efficiently stored 
as structured text documents in a human- and ma-
chine-readable format. 

EDA® provides a variety of import filters or convert-
ers that transfer data from different formats, e.g. 
also SEP1240 [4], into the internal JSON representa-
tion. These importers can be flexibly extended and 
adapted to support the testing machines of different 
laboratories and manufacturers as well as foreign 
formats. The JSON schema is freely customizable, so 
that special tests with special channels can also be 
integrated. 

The data is stored in the NoSQL database MongoDB, 
which is characterized by very good scalability, so 
that even large data volumes in the multi-GB range 
can be processed efficiently. In the case of extensive 
material qualification projects, separate databases 
can also be defined in each case. 

Test results are assigned several different tags/iden-
tifiers in the system, so that they can be displayed 
and evaluated both on an order-related and an over-
all basis. For this purpose, freely definable input 
masks can be used to define the orders, test series 
and individual tests. Furthermore, such metadata as 
well as the test data itself can also be automatically 
transferred from external systems via a REST inter-
face.  

To evaluate the test data with the intention to pro-
duce data needed by other simulation tools, differ-
ent methods need to be applied. In the case of S-N 
fatigue tests this can be the maximum likelihood 
method [5] to define the parameters of the S-N 
curve. Other methods are given in DIN 50100 [6], as 
there are the Probit, the delimination or the stair-
case method. 

3 Evaluation Applying 
Maximum Likelihood 
Method 

When estimating S-N curves based on fatigue tests, 
the evaluation of run outs plays a significant role. 
Run outs are specimens that have not failed after a 
specific number of cycles at which the test was 
stopped. Therefore, for these specimens, there is no 
information on the actual number of cycles to failure. 
This type of data is called censored data and cannot 
be evaluated by classical regression without system-
atical bias. However, the information on the endured 
number of cycles can be statistically considered and 
the systematical bias can be avoided, e.g., by the 

maximum likelihood estimation (MLE) [5]. In general, 
MLE can be used to estimate the parameters 𝑝 of a 
model 𝑦 = 𝑔(𝑝|𝑥) based on the samples 𝑥 and the 
assumption of a probability distribution by maximi-
zation of the likelihood function 
 

𝐿(𝑥|𝑝) = ∏ 𝑃

𝑁

𝑖=1

(𝑥𝑖|𝑝), 
( 1 ) 

 
 
where 𝑁 is the number of samples 𝑥. In simple appli-
cations, the maximum of the likelihood function is 
obtained by differentiation and an analytical solu-
tion. For more advanced applications, the maximum 
is obtained by numerical optimization. In the second 
case, the likelihood function (1) is evaluated for dif-
ferent parameters till the maximum is found, i.e., the 
optimization has converged. 
As shown in [5], the probability density function 
(PDF) of the logarithmic normal distribution 
 

𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒(𝑥|𝑝) = 𝑓(𝑥|𝑝) =
1
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is suitable for the estimation of S-N curves, where 𝜖̂ 
is the logarithmic difference between the estimated 
and measured model output 𝑦 and 𝑠 is the estimated 
standard deviation as shown in (3) and (4). In addi-
tion, equation  (3) can be interpreted as cost func-
tion. However, it must be mentioned that the PDF 
outputs a relative probability as a result. The abso-
lute probability of occurrence for a single experi-
mental result can only be calculated by integrating 
the PDF within narrow limits. For the application 
within the MLE this can be neglected [5]. 
 

𝜖̂ = 𝑙𝑜𝑔10𝑦 − 𝑙𝑜𝑔10�̂� ( 3 ) 

�̂� =
1

𝑁
∑𝜖̂2.  ( 4 ) 

 
The probability 𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 of failure of a specimen or 

component for a given number of cycles 𝑁 and a 
given stress level 𝜎𝑎 can be calculated directly using 
the equations (2), (3) and (4). The probability 𝑃𝑟𝑢𝑛𝑜𝑢𝑡 
of a run out is calculated by the cumulative density 
function (CDF), i.e., the primitive of the probability 
density function (2) and can be interpreted as the 
probability that a specimen or component survives 
the endured number of cycles. Since the CDF gives 
the probability for a specimen to fail inside a specific 

https://dnaguss.de/en/wiki/?itemid=634e563dd1d465f471788e72#mjx-eqn-test
https://dnaguss.de/en/wiki/?itemid=634e563dd1d465f471788e72#mjx-eqn-eps
https://dnaguss.de/en/wiki/?itemid=634e563dd1d465f471788e72#mjx-eqn-standev
https://dnaguss.de/en/wiki/?itemid=634e563dd1d465f471788e72#mjx-eqn-eps
https://dnaguss.de/en/wiki/?itemid=634e563dd1d465f471788e72#mjx-eqn-eps
https://dnaguss.de/en/wiki/?itemid=634e563dd1d465f471788e72#mjx-eqn-standev
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number of cycles, the probability of survival is given 
by 

𝑃𝑟𝑢𝑛𝑜𝑢𝑡(𝑥|𝑝) = 1 − 𝐹(𝑥|𝑝). 

 

( 5 ) 

There are different ways to apply the concept of MLE 
for S-N curves, e.g., the application for different for-
mulations of the S-N curve after the knee point. In 
the framework of PyLife [7], a slope after the knee 
point is not considered.  The S-N curve is defined by 
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and ( 6 ) 
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respectively. In maximum likelihood full estimation 
with PyLife, specimens which endured a higher stress 
than the stress at the knee point 𝜎𝑎,𝑘 are estimated 

in lifetime direction. Therefore, equation (6) is rear-
ranged such as 
 

𝑦 = 𝑁𝑘 = 𝑁 (
𝜎𝑎

�̂�𝑎,𝑘
)

�̂�

 
( 7 ) 

 

and the likelihood is calculated according to equa-
tions (1), (2) and (5). Specimens which endured a 
lower stress than the stress at the knee point 𝜎𝑎,𝑘  are 

evaluated in stress direction by the CDF, regardless 
of whether the specimen has failed or not. As a re-
sult, 1 − 𝐹 is used for run outs and 𝐹 is used for spec-
imens that have failed normally. In addition, the cost 
function is changed to 
 

𝜖̂ = 𝑙𝑜𝑔10

𝑦

�̂�
. ( 8 ) 

4 Experimental 

In this particular case, an importer for raw data of S-
N fatigue tests has been developed. Subsequent 
evaluation of these data applying the maximum like-
lihood method is performed to create a master ma-
terial data sheet with the characteristic data. These 
can be exported to other simulation tools. 
The importer is intended for the data originally gen-
erated from fatigue testing machines (e.g. resonance  

or servo-hydraulic test rigs, etc.) to examine the fa-
tigue strength of the specimen. It is not an obligation 
that tests should have to be done only by above 
mentioned machine to evaluate the structural dura-
bility in EDA®. EDA® is quite versatile regarding input 
data format. The user can not only upload individual 
data, but also a set of compressed data. Each test is 
saved as a JSON file that can be used for post-pro-
cessing. For this purpose, an add-on plugin "Woehler 
Curve" has been created, which uses the required 
data stored in "Test Summary" from the individual 
test data based on the predefined specimen failure 
criteria. 

4.1 Fatigue test analysis 

It has been discovered in the mid-20th century that 
most material failures are due to fatigue [8]. As a re-
sult, today’s product development relies heavily on 
numerical methods used in fatigue simulations, ra-
ther than relying totally on destructive or non-de-
structive inspection tests and using those tests re-
sults to predict the lifetime of components under cy-
clic loading. Finite Element Method (FEM) is a well 
know numerical technique used for solid body simu-
lation. Practical experiments are equally important 
as numerical simulation methods, because simula-
tion results can hardly be validated without practical 
testing. Since mid-1920s, numerous research efforts 
have been dedicated to figure out the unpredictable 
fatigue failure behavior, yet this phenomenon is still 
being explored. 
It is known that repetitive cyclic mechanical loading 
reduces the life of a specimen compared to the same 
specimen subjected to the equivalent maximum 
force, but in the static case. Fatigue failure is a result 
of (highly localized) plasticity, which is a result of ge-
ometrical non-linearity such as sudden shape 
change, which creates a bottle neck at a certain 
point. It is also called "stress concentration". At mi-
cro scale geometrical non-linearity could be defined 
by morphology of microstructure. A material non-lin-
earity also plays role in the fatigue failure. Within 
elastic regime an elasto-plastic material model could 
be considered linear, but after yield criteria (von 
Mises or Tresca) a material becomes nonlinear and 
has to be defined using suitable nonlinear material 
models. Therefore, for cyclic loading conditions, re-
gardless of elastic or plastic response of material, 
prediction of structural durability is crucial to avoid 
catastrophic failures.  
The crack evaluates from nucleation to macro scale 
and lifetime of specimen ends. Fatigue analysis is 
possible using stress-life (𝑆𝑁) relation and strain-life 
(𝜖𝑁) relation. A stress-life relation is mostly used in 

https://dnaguss.de/en/wiki/?itemid=634e563dd1d465f471788e72#mjx-eqn-SN_sig
https://dnaguss.de/en/wiki/?itemid=634e563dd1d465f471788e72#mjx-eqn-NV
https://dnaguss.de/en/wiki/?itemid=634e563dd1d465f471788e72#mjx-eqn-CDF
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a situation where plastic strain occurs only at the tips 
of fatigue crack and it is useful at medium (MCF), 
high (HCF) and very high cycle fatigue (VHCF). In case 
of low cycle fatigue (𝐿𝐶𝐹), a strain-life relation is 
preferred.  
An LCF, i.e. ϵN-approach, considers elastic as well as 
plastic strain of the material whereas magnitude of 
plastic strain reduces relatively faster than elastic  

 

strain with respect to number of cycles therefore 
elastic strain becomes dominant after knee point. As 
it can be seen in an example of Manson–Coffin–
Basquin curve given by A. Nieslony et. al [9], elastic 
strain (𝜖𝑎,𝑒) and plastic strain (𝜖𝑎,𝑝) amplitudes show 

linear behavior.  
 
In the transition of HCF (High Cycle Fatigue) to VHCF 
(Very High Cycle Fatigue), the slope of the S-N curve 
changes considerably. A VHFC region is one in which 
induced stress is below permissible stress limit of the 
material and material generally has a small elastic 
strain. Therefore, crack evolution occasionally hap-
pens. In case of load-controlled fatigue testing, an 
evaluation of cyclic tests is done at constant load am-
plitude. Even though with same external load and 
identical boundary condition, every test result may 
vary which makes statistically based scatter bands 
with a distinct survival probability necessary. There-
fore, to generate a continuous function of stress and 
lifetime using discrete points one can use some sta-
tistical estimations of constants if they are unknown. 
Now, along with other features, EDA® also provides 
a possibility to find the constants of the Woehler 
curve. For this purpose, the "Scientific Python" based 
infrastructure of the EDA® platform was supple-
mented by the free module "pyLife" [7].  

After uploading the data using the provided im-
porter/uploader, the required constants of the 
Woehler curve can be identified in a few steps using 
a plugin. EDA stores the test data in a tripartite LIMS 
(Laboratory Information Management System) -type 

Fig. 3: Tree structure of imported test data 

Fig. 4: Test summary based on predefined failure criteria 
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tree structure, starting from a test order via test se-
ries to individual tests.  

For every test summary (Error! Reference source not 
found.), a number of fatigue test data (lifetime and 
load amplitude) is taken from individual experi-
mental test based on predefined failure criteria of 
specimen. 

The "Woehler" plugin assists in determining the re-
quired constants for the Woehler curve: 

- Selection of the statistical method for constant 
search (inspired by pyLife [7]) or 

- Input of already known predefined constants like 
e.g., the stress amplitude at the knee point as shown 
in Figure 5. 

  

 

Based on the selected evaluation type, the methods 
and the constants in section tag Cyclic characteris-
tics, Woehler and in Curve tab EDA® will show the re-
spective representation (Error! Reference source 
not found.). The key parameters to represent the S-
N curve shown in FigureError! Reference source not 

found. are calculated using maximum likelihood 
method. Also, the same parameters have been cal-
culated using "elementary" and "maximum likeli-
hood infinite method" which all are available in py-
Life [5]. 
 
 
The elementary method is mainly used to generate 
initial parameters for maximum likelihood estima-
tion. It is based on the evaluation of the S-N data in 
a normal probability plot and on regression, as 
shown in [10] using the pearl chain method. The 
maximum likelihood infinite method is a combina-
tion of the elementary method and the maximum 
likelihood method. In this method, the results from 
the elementary method are used, but the stress am-
plitude at the knee point (𝜎𝑎,𝑘) and the scatter in 

stress direction (𝑇𝑆) are determined using the maxi-
mum likelihood estimation. The knee point (𝑁𝑘) is 
not directly determined by maximum likelihood esti-
mation, it is calculated based on the stress at the 
knee point 𝜎𝑎,𝑘 and the slope in finite regime (𝑘1). 

The difference between the key parameters of these 
three known methods are shown in below TableEr-
ror! Reference source not found.:  

Table 1: Comparison of the results of different methods 

Key  
parame-
ters 

Elemen-
tary 

Max. like-
lihood 

Max. like-
lihood in-
finite 

𝜎𝑎,𝑘 [𝑀𝑃𝑎] 228.01 224.25 225.49 
𝑁𝑘[−]  7.89𝑥105 9.16𝑥105 8.72𝑥105 
𝑇𝑠 [−] 1.19 1.19 1.23 

 
 

Fig. 5: Required predefined constants for Woehler curve 

representation 

Fig. 6: S-N curve in EDA evaluated with maximum likelihood method 

_Ref119077762
_Ref119077762
_Ref119077762
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The slope in finite life regime for all methods is 𝑘1 =
9.01. The red squares in Fig. 6 and Fig. 7 are experi-
mental test results and the three lines are continu-
ous closest possible curve fitting of the "Woehler  

 
curve" based on given input using elementary 
method. A blue line represents 50% probability of 
survival, whereas green and grey line represent 10% 
and 90% probability of survival (Fig. 6). The scatter 
lines are important to get an optical impression of 
the survival probability.  

4.2 Metallography 

Fatigue data results are very dependent on the mi-
crostructure, the amount of ferrite and perlite, the 
number, size and shape of the graphite particles as 
well as grain size of the material [11]. This makes the 
microstructure an essential part of the complete 
data set and therefore EDA® also offers to save these 

data together with the raw and evaluated data (Er-
ror! Reference source not found.). Obviously, the at-
tributes to describe the microstructure can be cus-
tomized in case it is planned to perform fatigue tests 

on a different material such lamellar cast iron, steel 
or aluminum. 
 
It is also rendered possible to save pictures together 
with the data set (Error! Reference source not 
found.) with allows the direct comparison to the 
evaluated data of Fig. 9. 
 
To compare the results of different tests of one ma-
terial or different material groups this can be per-
formed using the data comparison table (Optimizer). 
Here, characteristic data can be compared, statisti-
cally evaluated according to the standards (e.g. [12]) 
and plotted, also in parametric form. 

4.3 Integrated reporting 

All determined evaluations, data tables and image 
files can be integrated into reports generated by the 
system. The complete LaTeX library is available for 
this purpose. The result is professional, print-ready 
documents. The main advantage, however, is that all 
data sets contained in the report are accessible from 
within the report - if the report is made accessible 
from within the system, which is easily possible 
through a fine-grained customizable permission sys-
tem, all data sets and evaluations can be traced back 
to the data source with one click, provided the  
 
reader’s permission allows this. Reports thus be-
come a true store of knowledge; data from reports 
can be quickly used for further analysis. Extensive lit-
erature database functions are available for the 

Fig. 7: S-N Curve in EDA using predefined constants 
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management of existing documents, such as the full-
text searchability of indexed pdf files. An existing re-
porting system can thus be seamlessly integrated 
into the EDA® environment. 

 
5 Conclusions 

The Matplus EDA® system enables the integration of 
information from materials testing into a compre-
hensive knowledge base and links this with materials 
and process data. Valuable core know-how is thus 
made available throughout the company with verti-
cal and horizontal integration across project and de-
partmental boundaries. Data and knowledge islands 
are dissolved and the uniform use of consistent, ver-
ified models is made possible. In addition to simpli-
fying processes, the system ensures a uniform data  
 
structure in formats that can be read at any time 
without proprietary binary objects and thus the best 
possible sustainability. 
 
For the field of fatigue strength, cyclic test results 
from testing machines can be imported. Integrated 
functionalities for evaluation include classical meth-
ods as well as the Maximum-Likelihood method and 
curve fitting. Results from different evaluations can 
be easily compared and visualized in the web envi-
ronment. The advantage is that results from differ-
ent projects and reports can be directly overlaid.    
Studies [5] show that the Maximum-Likelihood 
method is superior to the classical methods in many 

cases and should be used preferentially, even if only 
minor differences can be seen in the example shown 
here.  
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